mardi 26 avril 2016

Quand l'AI crée des concepts



« Je n'ai jamais vu une révolution aussi rapide. On est passé d'un système un peu obscur à un système utilisé par des millions de personnes en seulement deux ans. »
Yann LeCun
Toutes les grandes entreprises tech s'y mettent : Google, IBM, Microsoft, Amazon, Adobe, Yandex ou encore Baidu y investissent des fortunes. Facebook également, qui, signal fort, a placé Yann LeCun à la tête de son nouveau laboratoire d'intelligence artificielle installé à Paris.
Ce système AI basé sur des « réseaux de neurones artificiels » numériques, est, pêle-mêle, utilisé pour comprendre la voix, être capable d'apprendre à reconnaître des visages. Il a « découvert » par lui-même le concept de chat et est à l'origine des images psychédéliques qui ont inondé la Toile ces dernières semaines, aux allures de « rêves » de machines.
« La technologie du deep learning apprend à représenter le monde. C'est-à-dire comment la machine va représenter la parole ou l'image par exemple », pose Yann LeCun, considéré par ses pairs comme un des chercheurs les plus influents dans le domaine. « Avant, il fallait le faire à la main, expliquer à l'outil comment transformer une image afin de la classifier. Avec le deep learning, la machine apprend à le faire elle-même. Et elle le fait beaucoup mieux que les ingénieurs, c'est presque humiliant !»
Pour comprendre le deep learning, il faut revenir sur l'apprentissage supervisé, une technique courante en IA, permettant aux machines d'apprendre. Concrètement, pour qu'un programme apprenne à reconnaître une voiture, par exemple, on le « nourrit » de dizaines de milliers d'images de voitures, étiquetées comme telles. Un « entraînement », qui peut nécessiter des heures, voire des jours. Une fois entraîné, il peut reconnaître des voitures sur de nouvelles images.
« La particularité, c'est que les résultats de la première couche de neurones vont servir d'entrée au calcul des autres », détaille Yann Ollivier, chercheur en IA au CNRS, spécialiste du sujet. Ce fonctionnement par « couches » est ce qui rend ce type d'apprentissage « profond ». Yann Ollivier donne un exemple parlant :
« Comment reconnaître une image de chat ? Les points saillants sont les yeux et les oreilles. Comment reconnaître une oreille de chat ? L'angle est à peu près de 45°. Pour reconnaître la présence d'une ligne, la première couche de neurones va comparer la différence des pixels au-dessus et en dessous : cela donnera une caractéristique de niveau 1. La deuxième couche va travailler sur ces caractéristiques et les combiner entre elles. S'il y a deux lignes qui se rencontrent à 45°, elle va commencer à reconnaître le triangle de l'oreille de chat. Et ainsi de suite. »
A chaque étape – il peut y avoir jusqu'à une vingtaine de couches –, le réseau de neurones approfondit sa compréhension de l'image avec des concepts de plus en plus précis. Pour reconnaître une personne, par exemple, la machine décompose l'image : d'abord le visage, les cheveux, la bouche, puis elle ira vers des propriétés de plus en plus fines, comme le grain de beauté. « Avec les méthodes traditionnelles, la machine se contente de comparer les pixels. Le deep learning permet un apprentissage sur des caractéristiques plus abstraites que des valeurs de pixels, qu'elle va elle-même construire », précise Yann Ollivier.
Outre sa mise en œuvre dans le champ de la reconnaissance vocale avec Siri, Cortana et Google Now, le deep learning est avant tout utilisé pour reconnaître le contenu des images. Des chercheurs l'utilisent pour classifier les galaxies. Yann LeCun fait aussi depuis plusieurs années cette démonstration impressionnante : il a créé un programme capable de reconnaître en temps réel les objets filmés par la webcam d'un simple ordinateur portable.
Une des réalisations les plus poussées et les plus spectaculaires du deep learning a eu lieu en 2012, quand la machine a analysé, pendant trois jours, dix millions de captures d'écran issues de YouTube, choisies aléatoirement et, surtout, non étiquetées. Un apprentissage « en vrac » qui a porté ses fruits : à l'issue de cet entraînement, le programme avait appris lui-même à détecter des têtes de chats et des corps humains – des formes récurrentes dans les images analysées. « Ce qui est remarquable, c'est que le système a découvert le concept de chat lui-même. Personne ne lui a jamais dit que c'était un chat. » a expliqué Andrew Ng, fondateur du projet Google Brain, dans les colonnes du magazine Forbes.
« L'espoir est que plus on augmente le nombre de couches, plus les réseaux de neurones apprennent des choses compliquées, abstraites, qui correspondent plus à la manière dont un humain raisonne », anticipe Yann Ollivier. Pour lui, le deep learning va, dans une échéance de 5 à 10 ans, se généraliser « dans toute l'électronique de décision », comme dans les voitures ou les avions. Il pense aussi à l'aide au diagnostic en médecine, citant certains réseaux de neurones qui « se trompent moins qu'un médecin pour certains diagnostics », même si, souligne-t-il, « ce n'est pas encore rôdé ». Les robots seront eux aussi, selon lui, bientôt dotés de cette intelligence artificielle. « Un robot pourrait apprendre à faire le ménage tout seul, et ce serait bien mieux que les robots aspirateurs, qui ne sont pas fantastiques ! », sourit-il. « Ce sont des choses qui commencent à devenir envisageables. »
Plus inattendu, les réseaux de neurones pourraient aussi avoir une influence sur les neurosciences, explique Yann LeCun. « Des chercheurs les utilisent comme un modèle du cortex visuel, car il y a des parallèles ». « Le cerveau humain fonctionne aussi par couches : il capte des formes simples, puis complexes », explique Christian Wolf, spécialiste de la vision par ordinateur à l'INSA de Lyon. « En ce sens, il existe une analogie entre les réseaux de neurones et le cerveau humain. Mais, à part cela, on ne peut pas dire que le deep learning est à l'image du cerveau. »
Source : (extraits de) Morgane Tual journaliste au Monde
En savoir plus sur http://www.lemonde.fr/pixels/article/2015/07/24/comment-le-deep-learning-revolutionne-l-intelligence-artificielle_4695929_4408996.html#Ee3gtqsBrl38Ievm.99

Aucun commentaire:

Enregistrer un commentaire